2,665 research outputs found

    Sialic acid and receptor expression on the respiratory tract in normal subjects and H5N1 and non-avian influenza patients.

    Get PDF
    published_or_final_versio

    The role of influenza virus gene constellation and viral morphology on cytokine induction, pathogenesis, and viral virulence.

    Get PDF
    Key Messages 1. H5N1 viruses that cause severe disease in humans are potent inducers of proinflammatory cytokines in contrast to seasonal influenza viruses, and this may play a role in the mechanism of H5N1 pathogenesis. 2. H5N1 viruses are predominantly spherical in morphology. Virus morphology does not influence the ability to induce proinflammatory cytokines. 3. The NS1 viral protein may play a role in the potency of proinflammatory induction. 4. The H5N1 haemagglutinin and neuraminidase do not appear to transfer the high cytokine phenotype. 5. The ability to induce cytokines is a polygenic trait, involving a combination of different viral genes.published_or_final_versio

    Frutapin, a lectin from Artocarpus incisa (breadfruit): cloning, expression and molecular insights

    Get PDF
    Artocarpus incisa (breadfruit) seeds contain three different lectins (Frutalin, Frutapin and Frutackin) with distinct carbohydrate specificities. The most abundant lectin is Frutalin, an α-D-galactose-specific carbohydrate-binding glycoprotein with antitumour properties and potential for tumour biomarker discovery as already reported. Frutapin (FTP) is the second most abundant, but proved difficult to purify with very low yields and contamination with Frutalin frustrating its characterization. Here, we report for the first time high-level production and isolation of biologically-active recombinant FTP in E. coli BL21, optimizing conditions with the best set yielding >40 mg/L culture of soluble active FTP. The minimal concentration for agglutination of red blood cells was 62.5 µg/mL of FTP, a process effectively inhibited by mannose. Apo-FTP, FTP-mannose and FTP-glucose crystals were obtained and diffracted X-rays to a resolution of 1.58 (P212121), 1.70 (P3121) and 1.60 (P3121) Å, respectively. The best solution showed four monomers per asymmetric unit. Molecular Dynamics simulation suggested FTP displays higher affinity for mannose than glucose. Cell studies revealed FTP was non-cytotoxic to cultured mouse fibroblast 3T3 cells below 0.5 mg/mL and also capable of stimulating cell migration at 50 µg/mL. In conclusion, our optimized expression system allowed high amounts of correctly-folded soluble FTP to be isolated. This recombinant bioactive lectin will now be tested in future studies for therapeutic potential; for example, in wound healing and tissue regeneration

    Electrophysiological Heterogeneity of Fast-Spiking Interneurons: Chandelier versus Basket Cells

    Get PDF
    In the prefrontal cortex, parvalbumin-positive inhibitory neurons play a prominent role in the neural circuitry that subserves working memory, and alterations in these neurons contribute to the pathophysiology of schizophrenia. Two morphologically distinct classes of parvalbumin neurons that target the perisomatic region of pyramidal neurons, chandelier cells (ChCs) and basket cells (BCs), are generally thought to have the same "fast-spiking" phenotype, which is characterized by a short action potential and high frequency firing without adaptation. However, findings from studies in different species suggest that certain electrophysiological membrane properties might differ between these two cell classes. In this study, we assessed the physiological heterogeneity of fast-spiking interneurons as a function of two factors: species (macaque monkey vs. rat) and morphology (chandelier vs. basket). We showed previously that electrophysiological membrane properties of BCs differ between these two species. Here, for the first time, we report differences in ChCs membrane properties between monkey and rat. We also found that a number of membrane properties differentiate ChCs from BCs. Some of these differences were species-independent (e.g., fast and medium afterhyperpolarization, firing frequency, and depolarizing sag), whereas the differences in the first spike latency between ChCs and BCs were species-specific. Our findings indicate that different combinations of electrophysiological membrane properties distinguish ChCs from BCs in rodents and primates. Such electrophysiological differences between ChCs and BCs likely contribute to their distinctive roles in cortical circuitry in each species. © 2013 Povysheva et al

    Mutations in maltose-binding protein that alter affinity and solubility properties

    Get PDF
    Maltose-binding protein (MBP) from Escherichia coli has been shown to be a good substrate for protein engineering leading to altered binding (Marvin and Hellinga, Proc Natl Acad Sci U S A 98:4955–4960, 2001a) and increased affinity (Marvin and Hellinga, Nat Struct Biol 8:795–798, 2001b; Telmer and Shilton, J Biol Chem 278:34555–34567, 2003). It is also used in recombinant protein expression as both an affinity tag and a solubility tag. We isolated mutations in MBP that enhance binding to maltodextrins 1.3 to 15-fold, using random mutagenesis followed by screening for enhanced yield in a microplate-based affinity purification. We tested the mutations for their ability to enhance the yield of a fusion protein that binds poorly to immobilized amylose and their ability to enhance the solubility of one or more aggregation-prone recombinant proteins. We also measured dissociation constants of the mutant MBPs that retain the solubility-enhancing properties of MBP and combined two of the mutations to produce an MBP with a dissociation constant 10-fold tighter than wild-type MBP. Some of the mutations we obtained can be rationalized based on the previous work, while others indicate new ways in which the function of MBP can be modified

    The Alternating Access Transport Mechanism in LacY

    Get PDF
    Lactose permease of Escherichia coli (LacY) is highly dynamic, and sugar binding causes closing of a large inward-facing cavity with opening of a wide outward-facing hydrophilic cavity. Therefore, lactose/H+ symport via LacY very likely involves a global conformational change that allows alternating access of single sugar- and H+-binding sites to either side of the membrane. Here, in honor of Stephan H. White’s seventieth birthday, we review in camera the various biochemical/biophysical approaches that provide experimental evidence for the alternating access mechanism

    An Epigenetic Blockade of Cognitive Functions in the Neurodegenerating Brain

    Get PDF
    Cognitive decline is a debilitating feature of most neurodegenerative diseases of the central nervous system, including Alzheimer’s disease. The causes leading to such impairment are only poorly understood and effective treatments are slow to emerge. Here we show that cognitive capacities in the neurodegenerating brain are constrained by an epigenetic blockade of gene transcription that is potentially reversible. This blockade is mediated by histone deacetylase 2, which is increased by Alzheimer’s-disease-related neurotoxic insults in vitro, in two mouse models of neurodegeneration and in patients with Alzheimer’s disease. Histone deacetylase 2 associates with and reduces the histone acetylation of genes important for learning and memory, which show a concomitant decrease in expression. Importantly, reversing the build-up of histone deacetylase 2 by short-hairpin-RNA-mediated knockdown unlocks the repression of these genes, reinstates structural and synaptic plasticity, and abolishes neurodegeneration-associated memory impairments. These findings advocate for the development of selective inhibitors of histone deacetylase 2 and suggest that cognitive capacities following neurodegeneration are not entirely lost, but merely impaired by this epigenetic blockade

    Targeted gene therapy of nasopharyngeal cancer in vitro and in vivo by enhanced thymidine kinase expression driven by human TERT promoter and CMV enhancer

    Get PDF
    <p>Abstract</p> <p>Background/Aim</p> <p>To explore the therapeutic effects of thymidine kinase (TK) expressed by enhanced vector pGL3-basic- hTERTp-TK-EGFP-CMV driven by human telomerase reverse transcriptase promoter (hTERTp) as well as cytomegalovirus immediate early promoter enhancer (CMV).</p> <p>Materials/Methods</p> <p>Enhanced TK-EGFP expression was confirmed by fluorescent microscopy, real time PCR and telomerase activity. Its effects were examined by survival of tumor cells NPC 5-8F and MCF-7, index of xenograft implanted in nude mice and histology.</p> <p>Results</p> <p>Compared with non-enhanced vector pGL3-basic-TK-hTERTp-EGFP, TK expressed by the enhanced vector significantly decreased NPC 5-8F and MCF-7 cell survival rates after ganciclovir (GCV) treatment (p < 0.001) and tumor progress in nude mice with NPC xenograft and treated with GCV, without obvious toxicity to mouse liver and kidney.</p> <p>Conclusion</p> <p>The enhanced TK expression vector driven by hTERTp with CMV enhancer has brighter clinical potentials in nasopharyngeal carcinoma therapy than the non-enhanced vector.</p
    corecore